Toward ITRF2020 Enhancing the Modelling of Nonlinear Station Motions

Zuheir Altamimi Paul Rebischung Xavier Collilieux Laurent Métivier Kristel Chanard

IGN-IPGP, France

OUTLINE

- Introduction
- Why do we need a reference frame?
- Reference frame definition & representations
- ITRF Construction / combination model
- ITRF2020:
 - Combination strategy & model
 - Network & colocations
 - An augmented parametric reference frame
 - Nonlinear station motions: Periodic signals and Post-Seismic Deformation
 - Scale of ITRF2020?
 - Some preliminary results: preliminary solution: ITRF2020P
 - Conclusion

Why a Reference System/Frame is needed?

Operational geodesy applications:

National geodetic systems/frames

Positioning : Real Time or a posteriori

• Navigation: Aviation, Terrestrial, Maritime

Today: via GNSS only!

• Require the availability of the orbits and the RF (ITRF)

Many, many users...

Mean sea level change

A small drift of 1 mm/yr in the ITRF origin, translates into apparent 0.9 mm/yr in sea level rise at high latitudes

"Motions" of the deformable Earth & technique systematic errors

- Nearly linear motion:
 - Tectonic motion: mainly horizontal (Plate Motion Model)
 - Post-Glacial Rebound: Vertical & Horizontal
- Nonlinear motion:
 - Loading deformation, including Annual, Semi & Inter-Annual, etc.
 - Co- & Post-seismic deformations,
 - Poro/thermo-elastic deformations
 - Transient deformations, Volcano Eruptions, local even
- Systematic errors, e.g. draconitics, monument instability, thermal deformation, gravitational deformation, ...

Reference Frame Representations

• Long-Term Linear Frame: mean station positions at a reference epoch (t₀) and station velocities:

$$X(t) = X(t_0) + \dot{X}(t-t_0)$$
 <= Regularized Position With piece-wise linear function

- The indispensable basis for science and operational geodesy applications
- Nonlinear Reference Frames:
 - Augmented Parametric RF: Secular Frame + nonlinear parametric functions (==> ITRF2020):

$$X(t) = X(t_0) + \dot{X}.(t - t_0) + \delta X(t)_{PSD} + \delta X(t)_{S}$$

- Non-parametric RF: Time series of "Quasi-Instantaneous" reference frames
 - Daily or weekly representations
 - Nonlinear motion embedded in their time series
 - Still rely on the ITRF for at least the orientation definition

All the above suffer from technique systematic errors

ITRF2020 Construction

Input data: Time series:

- DORIS/IDS weekly
- GNSS/IGS daily
- SLR/ILRS weekly
- VLBI/IVS: Session-wise
- Local ties

Additional constraints at colocation sites: Equality constraints for

- Station velocities
- Station seasonal signals

Time series analysis & stacking of the 4 technique time series all together + Modeling of nonlinear station motions:

- Periodic signals
- Post-Seismic Deformation

ITRF2020 Specifications:

Origin: SLR

Scale: SLR & VLBI

Orientation: Alignment to ITRF2014

ITRF2020

 $X, \dot{X}, \delta X_{PSD}$, Seasonal Signals and EOPs

ITRF Combination model

Station positions, velocities, transfo parameters & periodic terms

$$\begin{cases} \begin{pmatrix} x_s^i \\ y_s^i \\ z_s^i \end{pmatrix} = \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix} + (t_s^i - t_0) \begin{pmatrix} \dot{x}^i \\ \dot{y}^i \\ \dot{z}^i \end{pmatrix} + T_k + D_k \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix} + R_k \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix} \\ + (t_s^i - t_k) \begin{bmatrix} \dot{T}_k + \dot{D}_k \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix} + \dot{R}_k \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix} \end{bmatrix} \\ + \sum_{j=1}^{n_f} \begin{bmatrix} \begin{pmatrix} a_x^i \\ a_y^i \\ a_z^i \end{pmatrix} \cos[\omega_j(t_s^i - t_0)] + \begin{pmatrix} b_x^i \\ b_y^i \\ b_z^i \end{pmatrix} \sin[\omega_j(t_s^i - t_0)] \end{bmatrix} \\ \begin{pmatrix} \dot{x}_s^i \\ \dot{y}_s^i \end{pmatrix} = \begin{pmatrix} \dot{x}^i \\ \dot{y}^i \\ \dot{z}^i \end{pmatrix} + \dot{T}_k + \dot{D}_k \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix} + \dot{R}_k \begin{pmatrix} x^i \\ y^i \\ z^i \end{pmatrix}$$

Earth Orientation Parameters

$$\begin{cases} x_s^p &= x_c^p + R2_k \\ y_s^p &= y_c^p + R1_k \\ UT_s &= UT_c - \frac{1}{f}R3_k \\ \dot{x}_s^p &= \dot{x}_c^p \\ \dot{y}_s^p &= \dot{y}_c^p \\ LOD_s &= LOD_c \end{cases}$$

PSD: applied as a correction model before stacking

$$\delta L(t) = \sum_{i=1}^{n^l} A_i^l \log(1 + \frac{t - t_i^l}{\tau_i^l}) + \sum_{i=1}^{n^e} A_i^e (1 - e^{-\frac{t - t_i^e}{\tau_i^e}})$$

ITRF2020: Expected Sites

> 878 Northern hemisphere

> 355 Southern hemisphere

- > 1800 stations
- > 3106 discontinuities
- > ~1159 GNSS sites
 - > 1344 stations
 - > 2938 discontinuities

ITRF2020: Augmented Parametric Reference Frame

Regularized position $X(t) = X(t_0) + \dot{X}.(t - t_0) + \delta X(t)_{PSD} + \delta X(t)_{S}$ $\sum \text{Post-Seismic Deformations (PSD)}$ Parametric models will be refined

∑ Seasonal Signals will be provided in the CM-SLR frame

But there are discrepancies in the annual signal between techniques at some colocation sites.

IGS Repro3 Residual Periodogram

10 Frequencies were estimated: Annual, semi-annual + 8 GPS draconitic harmonics

(Ny-Alesund): Annual frequency residual

Arequipa & Tsukuba trajectories

Arequipa & Tsukuba trajectories

Tsukuba trajectories: GNSS & VLBI

ANKR, TUBI & ISTA

ITRF2020: Preliminary horizontal velocity field

ITRF2020: Preliminary vertical velocity field

Scale of ITRF2020?

- This is the first time of ITRF history where we have 4 independent and competitive scales stemming from the 4 techniques (DORIS, GNSS, SLR and VLBI)
- IGS / GNSS scale is based on z-PCOs for Galileo Satellites, using 3.7 yrs of Galileo data
- Improved ILRS / SLR scale determination with enhanced handling of range biases

DORIS, SLR & VLBI scales wrt ITRF2014

ILRSA 2020 origin & Scale wrt ITRF2014

ITRF2020 Preliminary: Relative scales

- Orange: all VLBI Sessions
- Red: Selected VLBI Sessions
- Light blue: all SLR time series
- Dark blue: Selected SLR time series

ITRF2020P scale definition: VLBI red + SLR dark blue = 0

ITRF2020 Preliminary: Relative scales

- Orange: all VLBI Sessions
- Red: Selected VLBI Sessions
- Light blue: all SLR time series
- Dark blue: Selected SLR time series
- Green: IGS/Repro3

ITRF2020P scale definition: VLBI red + SLR dark blue = 0

ITRF2020 Preliminary: Relative scales

Orange: all VLBI Sessions

Red: Selected VLBI Sessions

• Light blue: all SLR time series

Dark blue: Selected SLR time series

• Green: IGS/Repro3

Black: DORIS

Solution	Scale at 2015 (ppb)	Scale rate ppb/yr
IGS	0.646 ±0.058	0.016 ±0.004
IVS	0.111 ±0.052	0.001 ±0.004
ILRS	-0.111 ±0.052	-0.001 ±0.004
IDS	1.347 ±0.090	0.025 ±0.010

ITRF2020P scale definition: VLBI red + SLR dark blue = 0

Conclusion

- ITRF2020: an augmented parametric frame
- ITRF2020 Scale:
 - Expected scale difference between SLR & VLBI:
 - ~ 0.22 ppb (~1.4 mm), versus 1.37 ppb (~8.2 mm) in ITRF2014
 - The ITRF2020 scale will be determined using inner/internal constraints
 - Average of SLR (1997.7 2021.0) and VLBI (selected session up to 2014.0)
- ITRF2020P (Preliminary) Solution expected to be ready soon, will be submitted to the techniques for evaluation

